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Abstract

A current problem in NLP is massaging and

processing low-resource languages which lack

useful training attributes such as supervised

data, number of native speakers or experts,

etc. This review paper concisely summarizes

previous groundbreaking achievements made

towards resolving this problem, and analyzes

potential improvements in the context of the

overall future research direction.

1 Introduction

In the 1990s, the tools of Natural Language Pro-

cessing (NLP) experienced a major shift, transi-

tioning from rule-based approaches to statistical-

based techniques. Most of today’s NLP research

focuses on 20 of the 7000 languages of the world,

leaving the vast majority of languages understud-

ied. These languages are often referred to as

low-resource languages (LRLs), ill-defined as this

qualifier can be.

LRLs can be understood as less studied, re-

source scarce, less computerized, less privileged,

less commonly taught, or low density, among other

denominations (Singh, 2008; Cieri et al., 2016;

Tsvetkov, 2017). In this paper, the term LRL will

refer to languages for which statistical methods

cannot be directly applied because of data scarcity.

There are many reasons to care about LRLs.

Africa and India are the hosts of around 2000

LRLs, and are home to more than 2.5 billion in-

habitants. Developing technologies for these lan-

guages opens considerable economic perspectives.

Also, supporting a language with NLP tools can

prevent its extinction and foster its expansion,

open the knowledge contained in original works

to everyone, or even expand prevention in the con-

text of emergency response. (Tsvetkov, 2017)

This paper provides an overview of the recent

methods that have been applied to LRLs as well as

underlines promising future direction and points

out unsolved questions.

2 Related work

To the best of our knowledge, previous work that

conducted reviews on LRLs either aimed atten-

tion at specific tasks such as parts-of-speech tag-

ging (Christodoulopoulos et al., 2010), text clas-

sification (Cruz and Cheng, 2020) and machine

translation (Lakew et al., 2020), or, as the illus-

trious work on textual analysis (including named

entities, parts-of-speech, morphological analysis)

(Yarowsky et al., 2001) can tell, trace back to

decades ago.

The promotion of LRLs has also been at the

core of several conferences and workshops such

as LREC 1, AMTA 2 or LoResMT 3.

3 The projection technique

We start by presenting the projection technique,

that is central to most NLP tasks applied to LRLs.

The rest of our paper examines resource collec-

tion with a focus on automatic alignment (section

4), linguistic tasks, which directly take on the pro-

jection technique (section 5), speech recognition

(section 6), multilingual embeddings (section 7)

and their application to machine translation (sec-

tion 8) and classification (section 9). We conclude

by discussing the need for a unified framework to

assess the linguistic closeness of two languages, as

well as evaluate the ability of a solution to gener-

alize over LRLs, and call further studies to work

on more diversified languages.

The projection, or alignment technique has been

massively used by the literature since its formal-

ization by (Yarowsky et al., 2001). Indeed, it en-

ables to make the most of the existing annotations

of a high-resource language (HRL) and apply it

on a LRL, for which annotation is either hard to

collect or simply impossible for lack of language

1www.lrec-conf.org/
2www.amtaweb.org/
3https://www.mtsummit2019.com/
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Figure 1: Sample projection from English to Korean

expert.

There are three levels of alignment, document,

sentence and word, and each brings about in-

creasing information (in that order) at the cost of

more complex annotation. To list a few examples,

document-level alignment is useful in information

retrieval, sentence-level alignment is at the core

of machine translation (section 8), and word-level

alignment grounds most linguistic tasks (section

5). Figure 1 provides a sample word-level align-

ment between English and Korean.

It is difficult to collect corpora aligned at the

word level. This is why growing efforts are pur-

sued at automatically aligning corpora, with a fo-

cus on word alignment. We further discuss such

techniques in section 4.2.

Typically, the ideal one-to-one mapping setting

is the exception rather than the rule: there are

many cases where the source and target languages

exhibit mismatching structures, as can be seen on

Figure 1. There are indeed two major prerequi-

sites to ensure annotations can be efficiently pro-

jected: i) the two involved languages should be

structurally (grammatically) close to each other

depending on the task (for example both languages

should share the same inventory of tag sets for

part-of-speech tagging) ii) the underlying annota-

tions of both languages have to be consistent with

each other.

4 Resource collection

By definition, LRLs lack resources that are still

necessary for any NLP task. There are two general

trends to collecting information for LRLs: i) creat-

ing new datasets by annotating raw text ii) gather-

ing raw text and aligning it with a higher-resource

language

4.1 Dataset creation

A constant line of efforts has addressed the ques-

tion of dataset creation, for languages from all

around the globe.

First, the REFLEX-LCTL4 (Simpson et al.,

2008) and LORELEI5(Strassel and Tracey, 2016)

projects, conducted by the Linguistic Data Con-

sortium (LDC), released annotated corpora for 13

and 34 languages respectively. LORELEI went a

step further by integrating each dataset in a unified

framework that includes entity, semantic, part-of-

speech and noun phrase annotation.

The challenges faced by both LDC projects

served as a lesson for many other programs. (Go-

dard et al., 2017) produced a speech corpus that

can be used for speech recognition and language

documentation. (Marivate et al., 2020a,b) cu-

rated a collection of news headlines for two South

African languages, as well as established base-

lines for the classification task. This work showed

what was possible to achieve using very limited

amounts of data and should be an example to guide

future work in collecting new dataset for LRLs.

Future work The aforementioned studies

proved greatly innovative in the sources they

examined to built their datasets. Social media,

mobile applications but also governmental docu-

ments can all be taken advantage of to generate

textual content.

4.2 Automatic alignment

In the typical scenario, automatic alignment re-

quires language expertise and is time-consuming.

However, since most techniques involving LRLs

rely on aligned corpora, it has been the research

focus of many recent studies.

Word-level alignment The most elementary

alignment scope is at the word-level ; this task

is most commonly referred to as lexicon induc-

tion. The inverse consultation (IC) method (Sar-

alegi et al., 2011), that builds and compares both

dictionaries A → C and C → A from dictionaries

A ↔ B and B ↔ C, has been used in varied con-

texts, but fails to model lexical variants and poly-

semy (Figure 2, “joie” will be translated as “felio”

whereas it should not). The distributional similar-

ity (DS) method examines the context of a word to

further improve the IC algorithm.

The more recent cognate equivalence assump-

tion, that claims that two words sharing similar

writing, meaning and etymology share all their

meanings, significantly helped develop lexicon

4Research on English and Foreign Language Exploitation
– Less Commonly Taught Languages

5LOw-REsource Languages for Emergent Incidents



Figure 2: Ambiguity problem of the pivot technique

and synonym dictionaries (Nasution et al., 2016,

2017). Given two dictionaries A → B and B →
C, other work introduced constraints on the sim-

ilarity of languages A and C and modeled the

structures of the input dictionaries as a Boolean

optimization problem, in order to build dictionary

A → C (Wushouer et al., 2015).

Sentence-level alignment Particularly useful

for machine translation, sentence-level alignment

has recently gained momentum. The general

method consists in two steps: devising a simi-

larity score between two sentences and aligning

sentences based on these scores. A great vari-

ety of methods aimed to evaluate the distance be-

tween two sentences. Since the release of the

WMT16 dataset 6, translating the source sentence

into the target language and matching n-grams

(Dara and Lin, 2016; Gomes and Lopes, 2016;

Shchukin et al., 2016), or using cosine similarity

on tf-idf vectors (Buck and Koehn, 2016; Jakubina

and Langlais, 2016) has become popular. Even if

word-to-word translations can be applied to LRLs,

these systems often require higher-quality transla-

tion. Consequently, another trend preferably relies

on multilingual embedding such as (Artetxe and

Schwenk, 2019) and derive a similarity score with

the word mover distance (WMD) (Huang et al.,

2016; Mueller and Lal, 2019).

Document-level alignment Aligning corpora at

the document-level is useful for text classifica-

tion, translation or multilingual representations.

Based on sentence embedding and more relaxed

formulations of the Earth mover’s distance, (El-

Kishky and Guzmán, 2020) obtained state-of-the-

art alignment on low- and mid-resource languages.

Future work More emphasis should be put on

sentence distance evaluation, since it directly in-

fluences current results for document alignment.

Other solutions to improve document alignment

6http://www.statmt.org/wmt16/

could include designing new weighting schemes

to account for significant differences in document

sizes. Finally, heuristics could help cut down the

complexity of document alignment methods, such

as relative position in the document or sentence

length.

5 Linguistic tasks

The “linguistic” tasks we consider in this paper are

mostly related to grammar modeling, and their ap-

plications serve the interest of linguistics and re-

search rather than any commercial purpose (such

as machine translation, speech recognition, sum-

marization and many other).

5.1 Part-of-speech tagging

Solving the part of speech (POS) tagging task in

an unsupervised fashion essentially amounts to a

clustering task. Once every word is assigned to

one or several clusters, each cluster needs to be

grounded, or mapped to its corresponding POS.

Grounding fatally requires a minimum annotation.

There are many clustering algorithms, of which

Brown (Brown et al., 1992) is one of the earliest

formulation. It has yet been shown that this sim-

ple clustering technique is often the one that leads

to best performance (Christodoulopoulos et al.,

2010). Another very common technique inher-

its the hidden Markov model (HMM) and views

the POS tagging task as a sequence-to-sequence

problem. By training on a “parent” language for

which annotations are available, it is even possi-

ble to operate the grounding step without annota-

tion for the LRL, provided that the tags are stan-

dardized among both languages (Buys and Botha,

2016; Cardenas et al., 2019). Both works showed

that the choice of the “parent” language is diffi-

cult, because typologically close languages do not

always work best in practise, even when relying on

expert features provided by the WALS 7 features.

Instead, it advocates combining several parent lan-

guages to better leverage word-order patterns, and

shirk the question of parent language selection.

Supervised (or semi-supervised) methods are

also applied to the POS tagging task, using pro-

jection to cope with the lack of annotations. Earli-

est methods restricted their application to closely-

related languages by directly tagging the target

sentence the same way as the source sentence (also

7www.wals.info

http://www.statmt.org/wmt16/
www.wals.info


Figure 3: One model architecture for POS-tagging,

from (Fang and Cohn, 2017)

including class rebalancing to account for mi-

nor linguistic differences) (Yarowsky et al., 2001).

Long short-term memory networks (LSTM) based

on multilingual embeddings proved efficient when

available annotations were in larger quantities,

proved (Zennaki et al., 2015).

POS-tagging as a classification problem was

also attacked with hand-crafted features on very

limited amounts of annotations, backed with rea-

sonable help of projection on the English lan-

guage (Duong et al., 2014). The proposed model

is a softmax classifier, first trained on projected

annotations, and then adjusted on ground-truth

tags. Two other formulations relying on bidirec-

tional LSTMs further improved tagging accuracy

on some languages (Fang and Cohn, 2016, 2017).

As can be seen on Figure 3, the output of the BiL-

STM model is either directly used for the distantly

annotated data, or first passed through a projection

layer to be evaluated on the ground truth tags of

the LRL. The two formulations differ in the way

the hidden states of the BiLSTM are projected (ei-

ther matrix multiplication (Fang and Cohn, 2016)

or MLP (Fang and Cohn, 2017)).

Future work Most projected annotations cur-

rently stem from English corpora. One direction

for future work would be relying one or several

other HRLs to transfer annotations from. Also,

it might be interesting to find a way to com-

bine the information of multiple LRLs simultane-

ously, especially if they are closely-related. Be-

sides, a more robust evaluation metric has to be

adopted by unsupervised methods for POS tag-

ging. (Christodoulopoulos et al., 2010) suggests

using the V-measure, analogous to the F-score

metrics.

5.2 Dependency parsing

This section first summarizes two important find-

ings that greatly influenced the following studies.

Then, it shows how parameter sharing and zero-

shot transfer are profitable to dependency parsing.

Both techniques are facilitated by unified annota-

tion schemes, such as the Universal Dependencies

(UD) dataset 8.

Two major findings Dependency parsing has

traditionally built on POS-tagging, but in the con-

text of LRLs, gold POS tags are not available. Re-

placing POS information by inferred word clusters

is often more beneficial than trying to predict gold

POS (Spitkovsky et al., 2011). Allowing words

to belong to different clusters in different con-

texts indeed helps model polysemy. Another study

showed that transferring from multiple sources is

generally preferable to single source when lan-

guages share grammatical similarities (McDonald

et al., 2011) ; not because more data is leveraged

but because the model is thus exposed to a variety

of patterns.

Parameter sharing There are even some cases

where distant supervision through jointly learning

dependency parsing on a source and target lan-

guages leads to more accurate performance for the

target language, than relying on supervised data

for the target language (Duong et al., 2015a,b).

These two papers let their model share parameters

across two models, and only the embedding layer

is language-dependent.

Zero-shot transfer Transition-based LSTMs

predicting sequential manipulations on a sentence

(reduce left or right, shift) taking cluster and POS

information as well as embedding as input outper-

forms previous cross-lingual multi-source model

transfer methods (Ammar et al., 2016). Following

the multi-source transfer guideline, (Agić et al.,

2016) projects annotations weighted by alignment

probability scores. This weighted scheme aver-

aged on a large number of languages reached un-

precedented unlabeled attachment score (UAS) for

more than 20 languages. (Wu et al., 2018) es-

tablishes that carefully selecting source languages

allows for efficient direct transfer learning from

models that perform well on HRLs. This natu-

rally raises the question of how to optimally select

proper source languages given a LRL.

8www.universaldependencies.org

www.universaldependencies.org


Future work Several studies suggest learning

POS and dependencies in a joint fashion would

incite major advances in both tasks. (Lim et al.,

2020) recently presented a multi-view learning

framework that jointly learns POS tagging and

parsing. Both token and character embeddings

feed two independent LSTMs, the hidden state of

which are used as input as another central LSTM.

The outputs of the three models are then combined

and co-trained on both tasks.

Besides, sharing parameters across closely-

related languages could give rise to further studies

on larger scales and more diverse language sets.

More generally, the question of language “close-

ness” is a topical issue that needs careful consid-

eration.

5.3 Named entity recognition, typing and

linking

Extracting (recognizing, NER) named entities

from a text, classifying them (typing, NET) into

categories (such as location, name or organization)

and building bridges across them (linking, NEL)

is of capital importance in information retrieval,

recommendation system and classification. In the

context of LRLs, these three tasks have been the

subject of increasing research.

NER and NET Both tasks are often jointly

learnt as a classification task which includes a cat-

egory for wrods that are not named entities. Pro-

jection has been widely used in this task, either

to learn a model on a HRL and applying it to

a LRL (Zamin, 2020), or to train a classifier on

the projected annotations from a HRL (Yarowsky

et al., 2001). The early solutions to solve this

task mainly involved Hidden Markovian Mod-

els (HMM), but they fail to handle named entity

phrases and cannot model non-local dependen-

cies along the sentence (Yarowsky et al., 2001).

A transition towards Conditional Random Fields

(CRF) helped answer these two issues, at the cost

of hand-made and language-dependent features

(Saha et al., 2008; Demir and Özgür, 2014; Littell

et al., 2016). The features not only involved pre-

fixes and suffixes, but also more language-specific

morphology induction methods and transcriptions

in the international phonetic alphabet.

More recent work replaced costly feature engi-

neering with embeddings, that are learned from

BiLSTMs (Cotterell and Duh, 2017; Suriyachay

et al., 2019). A CRF is placed at the end of the

pipeline to handle the classification. A very differ-

ent approach, hypothesizing that NE of the same

type are embedded in the same region, showed

that viewing the typing task as a clustering ap-

proach based on embeddings can outperform CRF

architectures (Das et al., 2017). Phrases can eas-

ily be taken into account by this method. Finally

(Mbouopda and Yonta, 2020) takes advantage of

the low frequency of NEs in any document to de-

rive a novel embedding for corpora aligned at the

sentence-level. A traditional neural classifier is

then fed with these embedding to perform classifi-

cation. This contribution has the advantage of only

requiring sentence alignment, and can be applied

to other classification tasks where a few classes are

more prevalent than many other.

NEL Cross-lingual NEL (XEL) generally con-

sists in two steps: candidate generation and candi-

date ranking. External sources of knowledge such

as Wikipedia or Google Maps often help link or

disambiguate entities (Gad-Elrab et al., 2015). A

feature-based neural model further improved by

designing a new feature combination technique

and (Zhou et al., 2019) proposed a new scheme to

integrate two candidate generation methods (look-

up- and neural-based), suggest a set of language-

agnostic features and devise a non-linear combi-

nation method. This resulted in significant im-

provement in end-to-end NEL. (Zhou et al., 2020)

replace the LSTM model by an n-gram bilingual

model to solve the sub-optimal string modeling.

Finally, (Fu et al., 2020) relies on log queries,

morphological normalization, transliteration and

projection as a comprehensive improvement over

even supervised methods.

Future work As (Zamin, 2020) reported, per-

formance of NER systems is highly currently

domain-specific ; some papers incentivize design-

ing cross-domain techniques. The literature men-

tioned that conceiving a new metrics to compare

cross-lingual embedding is promising avenue to

XEL. Transferring from languages other than En-

glish would further allow to check the robustness

of the currently developed methods.

5.4 Morphology induction

Morphology induction aims to align inflected

word forms with their root form. This task unifies

lemmatization and morphological paradigm com-

pletion, which is the reverse process, that is finding

all inflected forms from a root word.



Figure 4: Morphology induction for Esperanto through

English

The earliest method relied on word alignment

between a source HRL and a target LRL and an ex-

isting morphology induction system in the source

language (Yarowsky et al., 2001). Essentially, a

word in the target language is mapped to its coun-

terpart in the source language via word-alignment,

which redirects to its root form thanks to the mor-

phology system. Word-alignment enables to map

the source root form back into the target language

to produce the desired output (Figure 4).

A more advanced method makes the assump-

tion that the word inflection occurs at the end of

the word to derive a trie-based approach. If the in-

flected i and root r word share a longest common

substring s such that i = s.̃i and r = s.r̃, then the

probability that i comes from r is defined by

P (i|r) =

|r|∑

k=0

λkP (r̃ → ĩ|r<k)

For example, P (replies|reply) = λ0P (y →
ies) + λ1P (y → ies|y) + λ2P (y → ies|ly) +
λ3P (y → ies|ply) + . . .. Other methods to

lemmatization involved learning edit-based strate-

gies (copy, delete, replace) through LSTMs mod-

els like (Makarov and Clematide, 2018), the se-

quential nature of which strikingly outperforms

character aligners.

Another more recent line of research has aimed

to create morphological paradigms, that is the set

of all rules that can be applied on a root form given

its part-of-speech. The unsupervised process con-

sists in three steps: candidate search, paradigm

merging and generation. While a reductive ap-

proach relies on tries (Monson et al., 2007), a more

robust method involves edit trees (Jin et al., 2020)

to model the transition between two words. Sur-

rounding context is used to merge paradigms, and

a transducer chooses from the different available

shifts for a given slot to create the final output. For

example in English, the third person of the present

tense can be obtained by adding “s” or “es”. The

transducer chooses to apply “es” to the root “miss”

rather than “s”.

Future work This last work achieves strong per-

formance in a very low-resource setting under the

hypothesis that a morphological shift only appears

in one paradigm. This is not always true (for ex-

ample in English adding an “s” both enables to

transition from singular to plural for nouns, and

to create the third person verbal from from the in-

finitive). Future directions could include releasing

this limiting assumption as well as making use of

word embedding to merge paradigms and explor-

ing other transduction models.

6 Speech recognition

The goal of large vocabulary continuous speech

recognition (LVCSR) is to derive the meaning

of a verbal message by identifying embedded

phones. Applying LVSCR on LRLs primarily

concerns how to exploit various language compo-

nents such as phones and syllables while also em-

ploying transfer learning from high-resource sec-

ondary languages to a target LRL.

Multilayer perceptrons A traditional approach

for multilayer perceptron (MLP) networks in

speech recognition is incorporating phonal train-

ing data from other HRLs and extracting tandem

features for LRL classification. However, this

originally required that data from all languages

be transcribed using a common phoneset. The

work in (Thomas et al., 2012) instead presented

an MLP model that completed the same task with-

out mapping each language to the same phone-

set. As shown in Figure 5, this is accomplished

first by training a 4-layer MLP with layers d, h1,

h2, and p on HRLs. The last layer p is then re-

moved and replaced with a single-layer perceptron

q whose weights have been pre-trained using only

limited data from the target LRL. The entire 4-

layer model was lastly trained again using only tar-

get LRL data. This approach is roughly 30 percent

more accurate than the baseline common-phoneset

model.

Hidden Markov models Another popular

speech recognition method is the hidden Markov

model (HMM), which is a subclass of unsuper-

vised dynamic Bayesian networks. An HMM in

speech recognition essentially works by learning



Figure 5: MLP model proposed by (Thomas et al.,

2012) that replaces the last layer of a network trained

on HRL ’P’ with a single layer pre-trained on LRL ’Q’

the probabilities for next sequential sounds given

a particular sound in training speech. It is then

made to confirm sequential sounds in speech

on a phone, syllable, and word level. From an

low-resource standpoint, HMM topology and the

scope of speech modelling units are major points

of consideration for ensuring success. For exam-

ple, (Fantaye et al., 2019) adopted a particular

LRL’s relatively few possible consonant-vowel

syllables as modelling units and iterated through

different HMM architectures. A deep-neural-

network-based HMM using transfer learning from

a language similar to the said LRL achieved great-

est results. The same transfer learning paradigm

for HMM-based speech recognition in LRLs also

explored in (Adams et al., 2017), which uses

English as a source language for Turkish.

Future work One literature focus is perfor-

mance of name and place entity detection in

speech. One avenue of future work must ad-

dress how to improve the detection accuracy of

these speech components. Another concern is the

lack of homogeneity among speech training data,

which have various noise, speakers, accents, emo-

tions, etc. that are difficult to standardize and cre-

ate lots of variance. Further research should yield

methods to filter and normalize training data.

7 Embeddings

Embeddings are the key to accurate and efficient

NLP models. They represent a model’s under-

standing of sentence structure and word mean-

Figure 6: The radical “ven” is quite common in Es-

peranto, thus it could be integrated in the English-

Esperanto segmentation, and benefit a few English

word including “venue”, “avenue”, “advent” and oth-

ers (Nguyen and Chiang, 2017)

ing. However, training embeddings is a resource-

heavy process and is not compatible with the

data scarcity of LRLs. Hence, to avoid a ran-

dom initialization of embeddings, different ap-

proaches are being used: multilingual representa-

tions, transfer learning for structurally similar lan-

guages, or even data augmentation.

7.1 Data Augmentation

Byte Pair Encoding segmentation, known as BPE

segmentation, extracts additional data from the

language corpus in order to generate the embed-

dings (Nguyen and Chiang, 2017). The motiva-

tion behind BPE segmentation to take advantage

of shared substrings: words from both dictionaries

are broken down into subwords and then the most

common subwords are kept as roots. (Figure 6).

This means that each word is therefore seen as a

sequence of tokens (or subwords) which increases

the amount of overlap between both vocabularies.

This technique is particularly useful for LRLs as

it improves the transferability of the embeddings.

Indeed, having more tokens in common between

the parent HRL and the target LRL means there

are more overlapping words to align the embed-

dings during transfer.

To combat the training data scarcity, another ap-

proach is to transform a LRL into a HRL using

data augmentation. A technique used in computer

vision was adapted to NLP by (Fadaee et al., 2017)

(Figure 7).

The idea is to create additional sentences by

replacing a single word in the sentences of the

dataset. Still, the words replaced for data augmen-

tation must fit the sentence structure properly (e.g.



Figure 7: Comparison between Computer Vision and

Low-Resource Languages data augmentation (Fadaee

et al., 2017).

verb replacing another verb) in order for the gen-

erated sentence to be usable during training. How-

ever, even if the sentence structure is preserved, its

meaning may be altered. This is problematic for

multiple LRL domains and is rarely used outside

of machine translation models. Indeed, for NMT,

models are built to translate even meaningless sen-

tences (e.g.: Boats are delicious!) as they only

require proper word pairs translations and correct

sentence structure.

Future work Although Data Augmentation

techniques proved successful to combat several

LRLs, current approaches struggle for extremely

low-resource languages. In fact, to properly han-

dle data augmentation, precise knowledge of sen-

tence structure, grammar and words translation

pairs is required in order to assert the correctness

of the generated sentence.

7.2 Multilingual Embeddings

Multilingual embedding-based models have been

introduced for zero-shot cross-lingual transfer. For

instance, using a single Bidirectional Long Short

Term Memory (BiLSTM) as the model encoder

(Artetxe and Schwenk, 2019) allows to learn a

classifier after training the multilingual embed-

dings. Therefore, the embeddings can be trans-

ferred to any of the languages the NMT is de-

signed for without any structural modifications.

Another multilingual embedding-based model

architecture uses multilingual BERT to perform

accurate zero-shot cross-lingual model transfer

(Pires et al., 2019). M-BERT proved effective at

transferring knowledge across languages with dif-

ferent scripts (no lexical overlap), which proves

that the model does capture multilingual represen-

tations into embeddings. These can later serve as

a basis for multilingual tasks.

8 Machine translation

A Neural Machine Translation model, known as

NMT model, aims to translate a sentence from

a source language to a target language. NMT

models are built using two separate but connected

models: an encoder and a decoder. The en-

coder’s goal is to break down the sentence logic

and word pairs, and then store this information

as embeddings. Afterwards, the decoder gener-

ates the translated sentence based on those embed-

dings.

This technology has proved to be highly ac-

curate and reliable for translating between two

HRLs. Yet, NMT models require large corpora of

training data, based on translations or annotated

data crafted by language experts. For common

languages such as English, Spanish or French, the

data used for training has already been processed

in large quantities. However, when it comes to

less common languages and dialects, there is lit-

tle to none translated data available. That is why

specific architectures and methods are required to

handle LRL NMT. The state-of-the-art techniques

and models are introduced in the following sec-

tions.

8.1 Transfer Learning

Transfer Learning (Zoph et al., 2016) relies on the

fact that NMT achieves great results for HRLs. In-

deed, it uses a two-model architecture: a parent

model which is a standard NMT model trained on

a pair of HRLs (e.g. French-English or English-

Spanish) and a child model which is the desired

translation model between the source and target

languages. More specifically, the parent model is

trained using a standard corpus and then, the em-

beddings of the parent model are used to initial-

ize those of the child model. This way, the em-

beddings of the child model are not randomly ini-

tialized and it can be trained more efficiently even

with a small amount of data.

Future work Transfer Learning works best

when the parent and child languages have simi-

lar lexicon and grammar. Strategies to combat this

issue still have to be developed, such as using an

ordering model (Murthy et al., 2018). The goal

of such a model is to reorder the sentences of the

source language to match the structure of the tar-

get language. Having the same sentence structure

allows for a more accurate transfer of embeddings



Figure 8: Example of an incorrect prediction when the

LM and NMT model disagree (Baziotis et al., 2020).

as similar words will have similar positions in sen-

tences.

8.2 Prior Models

A second approach to cope with LRLs consists in

introducing a prior model during training. Indeed,

the Zero-Shot Translation technique (Kumar et al.,

2019) allows to train the encoder model using mul-

tiple languages or dialects simultaneously. This

model is able to capitalize on the already learned

languages pairs to translate between unseen lan-

guage pairs. For instance, if the model has been

trained for English - French and French - Chinese

pairs then it can already handle English - Chinese

translation. Thus avoiding the rebuilding of the

NMT system for every new language pair.

Further works have replaced the Zero-Shot

Translation model by a Language Models (LM)

(Baziotis et al., 2020). The LM adds a regulariza-

tion term that pushes likelier output distributions

to the NMT. This means that, out of the top pre-

dictions output by the NMT, only the top word

amongst the ones which are validated by the LM

will be selected. Hence, this can be seen as a

knowledge distillation technique where the LM is

teaching the NMT about the target language.

Future work Language Model-based NMT,

however, is still exposed to incorrect predictions in

some cases where the LM and the NMT model dis-

agree on a prediction, even when the NMT model

predicted correctly (Figure 8).

8.3 Multilingual Learning

Multilingual Learning extends the transfer learn-

ing techniques in multilingual environments. The

idea is to build an NMT model using a univer-

sal shared lexicon and a shared sentence-level

representation, which is trained using multiple

LRLs. One of the first approaches (Gu et al.,

2018a) consists in using two additional compo-

nents compared to the traditional transfer learning

techniques. The first one is a universal lexical rep-

resentation to design the underlying word repre-

sentation for the shared embeddings. The second

is a mixture of language experts to deal with the

sentence-level sharing. This system is used during

the encoding and works as a universal sentence en-

coder. It allows to transfer the learned embeddings

for a given language pair into the universal lexical

representation.

A Model-agnostic meta-learning (MAML) al-

gorithm applied to low-resource machine trans-

lation allows to view language pairs as separate

tasks (Gu et al., 2018b). This technique results in

faster and more accurate training of the vocabu-

lary. Although, as MAML was initially designed

for deep learning purposes, it cannot handle tasks

with mismatched input and output. That is why it

is only applied to Universal NMT models.

Language Graph A rather structurally differ-

ent approach introduces the concept of Language

Graph for Multilingual Learning (He et al., 2019).

Vertices represent the various LRLs and edges rep-

resent the translation word pairs. Moreover, for

each edge, a weight score is assigned to denote

the accuracy of the translation pair. Then, a dis-

tillation algorithm is used to maximize the total

weight (accuracy) of the model, using forward

and backward knowledge distillation to boost ac-

curacy. The main advantage of such a graph is

that there exist multiple translation paths from one

word to another. (e.g. English to Spanish and En-

glish to French to Spanish). For LRLs, the direct

translation path generally has low accuracy due to

the lack of available parallel data. However, there

are some languages for which the translation pair

will have high accuracy and this resulting path will

be put to use.

9 Classification

Sentiment analysis Advanced opinion mining

models designed for the English language do not

work well on LRLs that have vastly different

grammar, unstructured format, and little applied

NLP research or resources. From a machine learn-

ing standpoint, one alternative is adopting lighter,

less resource-dependent baseline models that are

still successful with the English language and

modifying them to maximize success with a par-

ticular LRL. For example, (Al-Sallab et al., 2017)

adopted a recursive auto encoder (RAE) baseline



Figure 9: Aroma framework proposed by (Al-Sallab

et al., 2017), with augmented portions in blue

model for Arabic and augmented it with morpho-

logical tokenization, a sentiment-extracting neu-

ral network, an unsupervised pre-training block to

improve sentiment embedding initialization, and

a phrase structure parser to generate parse trees

(Figure 9).

An alternative solution is the lexicon-based ap-

proach, which manually classifies words in a sen-

tence based on a list of sentimentally-classed

words. The lexicon-based method, various ma-

chine learning methods such as K Nearest Neigh-

bor, Naive Bayes, and Decision Tree, as well as

hybrid architectures between the two are applied

on the English and Urdu languages in (Azam et al.,

2020).

Data expansion One way to lift LRLs out of

the “low-resource” category is obviously to in-

crease the quality and quantity of available super-

vised classification data. One such approach is

to expand existing data through adversarial distor-

tion of text attributes, or by extracting more fea-

tures using a transfer learning technique that sur-

mount pre-trained layers from recognition systems

for multiple common languages with new train-

able layers (Qi et al., 2019). A more direct ap-

proach is to manually compile a corpus dataset

that includes multi-label text classifications and

pre-training language models as a platform for fur-

ther NLP work for respective LRLs as done in

(Cruz and Cheng, 2020) for the Filipino language.

Miscellaneous There are many more LRL clas-

sification sub-topics. One such avenue is text read-

ability classification which, for example, can au-

tomate quality analysis and pinpoint areas requir-

ing edit in LRL textbooks using lexical, entropy-

based, and divergence-based features (Islam et al.,

2012).

Pattern recognition is another problem for LRLs

due to the lack of NLP study on coping with less

common textual attributes. The work in (Abliz

et al., 2020) has addressed impediments such as

vowel weakening and suffix-based morphological

changes for the Uyghur language through a pro-

posed algorithm that performs pattern matching

using syllable features.

Future work Although the above literature had

successful approaches for addressing the LRL

classification problem in their respective areas, the

overall research direction is still rooted in the fun-

damental understudy and lack of experience with

LRLs. Future classification work seems to be be

focused on two general categories. One line will

be further study of LRL morphological traits and

grammar patterns to increase model performance.

Another branch of research will focus on applying

existing classification models to use as a bench-

mark to improve off of for more novel methods.

10 Discussion

On top of the low-level examination we conducted

for various NLP tasks, we would like to summa-

rize two desiderata recurrently noted the literature:

collecting new datasets for more diverse languages

and devising a closeness index for languages.

Datasets diversity A few papers collected new

datasets in innovative ways, that we believe should

be further put forward. Extracting news headlines

or comments from social media (Marivate et al.,

2020a), relying on mobile applications to gather

audio extracts and annotations (Godard et al.,

2017), as well as relying on governmental sources,

constitute new alleys to dataset creation. Finally,

we would like to mention the Tatoeba 9 project,

that is a collaborative, open and free collection

of aligned sentences and translations in more than

350 languages.

Closeness index for languages Throughout our

review, we encountered a fair amount of papers

that reported the difficulty to select language pairs

that allow for smooth transfer or alignment. As

quoted by (Nasution et al., 2017), the Automated

Similarity Judgment Program (ASJP) (Wichmann

9www.tatoeba.org

www.tatoeba.org


and , eds.) 10 has collected a word list based

on the Swadesh list for more than 9500 languages

and dialects. This allows for a morphological and

lexical comparison, yet cannot help match gram-

matical differences across languages. That is why

we advocate the design of a task-specific linguistic

distance that would model both the morphological

and grammatical aspects of a language, and, given

a target language, would guide the choice of the

optimal language to transfer from.

11 Conclusion

A review of over 60 LRL-related papers has

yielded a general idea of this field’s most recent

work. In an area that concerns a fundamental

lack of data, a primary trend is expanding LRLs

datasets while also applying augmentation meth-

ods and transfer learning techniques from other

languages in a manner that copes with their dif-

ferences. Future work will highly involve improv-

ing the quality of LRLs data, taking advantage of

linguistic patterns/similarities, designing more ro-

bust learning models, and increasing the reliability

of evaluation methods.
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Héctor Martı́nez Alonso, Natalie Schluter, and An-
ders Søgaard. 2016. Multilingual projection for
parsing truly low-resource languages. Transactions
of the Association for Computational Linguistics,
4:301–312.

Ahmad Al-Sallab, Ramy Baly, Hazem Hajj,
Khaled Bashir Shaban, Wassim El-Hajj, and
Gilbert Badaro. 2017. Aroma: A recursive deep
learning model for opinion mining in arabic as a low
resource language. ACM Transactions on Asian and
Low-Resource Language Information Processing
(TALLIP), 16(4):1–20.

10www.asjp.clld.org/

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah A Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics, 4:431–444.

Mikel Artetxe and Holger Schwenk. 2019. Mas-
sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transac-
tions of the Association for Computational Linguis-
tics, 7:597–610.

Nazish Azam, Bilal Tahir, and Muhammad Amir
Mehmood. 2020. Sentiment and emotion analysis of
text: A survey on approaches and resources. LAN-
GUAGE & TECHNOLOGY, page 87.

Christos Baziotis, Barry Haddow, and Alexandra
Birch. 2020. Language model prior for low-
resource neural machine translation. arXiv preprint
arXiv:2004.14928.

Peter F Brown, Peter V Desouza, Robert L Mercer,
Vincent J Della Pietra, and Jenifer C Lai. 1992.
Class-based n-gram models of natural language.
Computational linguistics, 18(4):467–479.

Christian Buck and Philipp Koehn. 2016. Quick and
reliable document alignment via tf/idf-weighted co-
sine distance. In Proceedings of the First Confer-
ence on Machine Translation: Volume 2, Shared
Task Papers, pages 672–678.

Jan Buys and Jan A Botha. 2016. Cross-lingual
morphological tagging for low-resource languages.
arXiv preprint arXiv:1606.04279.

Ronald Cardenas, Ying Lin, Heng Ji, and Jonathan
May. 2019. A grounded unsupervised universal
part-of-speech tagger for low-resource languages.
arXiv preprint arXiv:1904.05426.

Christos Christodoulopoulos, Sharon Goldwater, and
Mark Steedman. 2010. Two decades of unsuper-
vised pos induction: How far have we come? In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages
575–584. Association for Computational Linguis-
tics.

Christopher Cieri, Mike Maxwell, Stephanie Strassel,
and Jennifer Tracey. 2016. Selection criteria for
low resource language programs. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 4543–
4549.

Ryan Cotterell and Kevin Duh. 2017. Low-
resource named entity recognition with cross-
lingual, character-level neural conditional random
fields. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 91–96.

Jan Christian Blaise Cruz and Charibeth Cheng.
2020. Establishing baselines for text classifica-
tion in low-resource languages. arXiv preprint
arXiv:2005.02068.

www.asjp.clld.org/


Aswarth Abhilash Dara and Yiu-Chang Lin. 2016.
Yoda system for wmt16 shared task: Bilingual doc-
ument alignment. In Proceedings of the First Con-
ference on Machine Translation: Volume 2, Shared
Task Papers, pages 679–684.

Arjun Das, Debasis Ganguly, and Utpal Garain. 2017.
Named entity recognition with word embeddings
and wikipedia categories for a low-resource lan-
guage. ACM Transactions on Asian and Low-
Resource Language Information Processing (TAL-
LIP), 16(3):1–19.

Hakan Demir and Arzucan Özgür. 2014. Improving
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